Documentation for RnSort.h and RnSort.c

Steven Andrews, © 2003

See the document “LibDoc” for general information about this and other libraries.

void sortV(float *a,float *b,int n);

void sortVdbl(double *a,double *b,int n);

void sortCV(float *a,float *bc,int n);

int locateV(float *a,float x,int n);

int locateVdbl(double *a,double x,int n);

float interpolate1(float *ax,float *ay,int n,int *j,float x);

double interpolate1dbl(double *ax,double *ay,int n,int *j,double x);

float interpolate1Cr(float *ax,float *ayc,int n,int *j,float x);

float interpolate1Ci(float *ax,float *ayc,int n,int *j,float x);

void convertxV(float *ax,float *ay,float *cx,float *cy,int na,int nc);

void convertxCV(float *ax,float *ayc,float *cx,float *cyc,int na,int nc);

Requires: <math.h>,"Rn.h"
Example program: SpectFit.c, LibTest.c
Written 12/98.  Works with Metrowerks C.  Moderate testing.  Added complex function 2/02.  Added double precision routines 10/02.

These routines work on sorted arrays of floats or doubles, and may be used in close conjuction with other matrix and vector routines.  For virtually all routines, the sorted array is assumed to be in ascending order.

sortV sorts vector a in order from smallest to largest value.  The routine first checks for a forward or backward pre-sorted vector, and then, if neccessary, does a heap sort using a routine nearly identical to that given in Numerical Recipes.  b is rearranged in the same manner as a, but does not influence the sorting in any way.  b may be either NULL or the same vector as a, if a dual vector is not required.

sortVdbl is identical to sortV except that all numbers are in double precision.

sortCV is identical to sortV except that the required vector bc is a complex vector, with 2n elements that alternate real and imaginary components.  a is still real.

locateV locates the largest element of a that is smaller than or equal to x, where a is a sorted array.  It returns the index of that element.  If x is smaller than any value in a, then –1 is returned; if x is larger than any value in a, then n-1 is returned.  If several elements of a are equal to each other and x is either equal to them or is between their value and the next higher value, then the element of the collection with the highest index is returned.  This routine uses a bisection type routine, which is almost exactly copied from Numerical Recipes.

locateVdbl is identical to locateV except that all numbers are in double precision.

interpolate1 does linear interpolation at position x. ax and ay are input x and y vectors, where the x values are sorted in ascending order, and n is the number of elements in each vector (minimum of 1).  The routine needs the closest smaller x value.  If its index or an index close by, but below it, is known, then send that value in as *j.  If the index is not known, then send in *j as -2 and the routine will locate it with locateV.  Either way, the correct index is returned in *j (identical to locateV).  If multiple elements of ax have the same value: if x equals that value, the corresponding ay with the highest index is returned, if x is less than them, the one with the lowest index is used for interpolation, and if x is greater than them, the one with the highest index is used for interpolation.  Here is a typical code fragment using interpolate1, which takes a sorted data set and rewrites it using a different set of x values.


for(j=-2,i=0;i<n2;i++) y2[i]=interpolate1(x1,y1,n1,&j,x2[i]);

interpolate1dbl is identical to interpolate1 except that all numbers are in double precision.

interpolate1Cr is identical to interpolate1 except that the vector ayc is a complex vector, with 2n elements that alternate real and imaginary components.  The function returns the interpolated value of the real components.

interpolate1Ci is identical to interpolate1Cr except that the function returns the interpolated value of the imaginary components.

convertxV takes a sorted x,y data set in ax and ay and interpolates the data to a different set of x values, from cx, outputing the result to cy.  ax and cx should be sorted beforehand.  This just does what the code fragment above shows, except that this routine is a little faster and easier to use.  Also, it checks first to see if all terms in cx are equal to those in ax, in which case the data are copied directly.  n needs to be at least 2.

convertxCV is identical to convertxV except that ayc and cyc are complex vectors with 2na and 2nc elements respectively.

