Documentation for random.h and random.c

Steven Andrews, © 2003

See the document “LibDoc” for general information about this and other libraries.

#ifndef __random_h

#define __random_h

#include <time.h>

#include <stdlib.h>

#include <math.h>

#define RAND_MAX_30 1073741823

#if RAND_MAX==32767

#define rand30() ((long)rand()<<15|rand())

#elif RAND_MAX<RAND_MAX_30

#define rand30() ((rand()&32767L)<<15|rand()&32767L)

#else

#define rand30() (rand()&RAND_MAX_30)

#endif

#define randomize() srand((unsigned int) time(NULL))

#define exprand(a) (-log((rand()+1.0)/(RAND_MAX+1.0))*(a))

#define exprand30(a) (-log((rand30()+1.0)/(RAND_MAX_30+1.0))*(a))

#define unirand(lo,hi) ((float)rand()/RAND_MAX*((hi)-(lo))+(lo))

#define unirand30(lo,hi) ((double)rand30()/RAND_MAX_30*((hi)-(lo))+(lo))

#define signrand() (rand()&1?1:-1)

#define coinrand(p) (rand()<(RAND_MAX+1.0)*(p))

#define coinrand30(p) (rand30()<(RAND_MAX_30+1.0)*(p))

#define intrand(n) (rand()%(n))

#define intrand30(n) (rand30()%(n))

#define thetarand() (acos(1.0-2.0*rand()/RAND_MAX))

#define radrand1(r) ((r)*sqrt((float)rand()/RAND_MAX))

#define radrand2(r) ((r)*pow((float)rand()/RAND_MAX,0.333333333333))

float binomrand(int n,float m,float s);

int intrandp(int n,float *p);

int poisrand(float xm);

float gaussrand();

void sphererand(float *x,float rad1,float rad2);

void sphererandd(double *x,double rad1,double rad2);

void randtable(float *a,int n,int eq);

void showdist(int n,float low,float high,int bin);

#endif
Include: <stdio.h>, <time.h>, <math.h>
Example program: LibTest.c
History: Written 5/12/95; modified 11/12/98. Routines have been moderately tested. Works with Metrowerks C. Documentation updated 10/16/01. Ported to Linux 10/16/01. Added randtable 11/16/01. Added intrandp 1/14/02. Added poisrand 1/26/02. Added rand30 and other …30 functions 11/8/02, but didn’t document them until 9/2/03. Added gaussrand 4/24/03. Added intrand30, coinrand30, RAND_MAX_30, and improved unirand and unirand30 9/2/03. Added radrand1 3/11/04. Added radrand2 and sphererand 3/25/04. Replaced a few implicit type casts with explicit ones 6/9/04.

Most of these routines return random numbers, chosen from a variety of densities. They use the stdlib.h rand() function, and have not been analyzed for the randomness quality. Before using these routines, it is recommended that the random number generator seed be set with either the stdlib.h function srand(unsigned int seed) or set to the clock value with randomize.

Note that 1.0*rand()/RAND_MAX returns a uniform density on [0,1] and (rand()+1.0)/(RAND_MAX+1.0) is uniform on (0,1]. To convert these uniform densities to the density (x), first calculate the cumulative probability P(x)=–∞∫x(x')dx', where it is seen that P(x) is 0 at x=–∞ and 1 at x=∞. Now if the value for y=P(x) is chosen with a uniform density, its value mapped onto x has the desired density. Thus a function should return x=P–1(y). It is also helpful to know that the CodeWarrior compiler on a Macintosh has RAND_MAX equal to 215–1, whereas it is 231–1 for the gcc compiler on Linux. The routines that end with a “30” are especially helpful on a Macintosh (and hinder slightly on Linux) by allowing 230 possible random numbers.

The table below shows the domain, range, and densities of the macros and routines given here. The domains are the domains over which the functions give reasonable values, but are not neccessarily sensible. For example, coinrand can accept an input anywhere between –∞ and ∞, although the function always returns 0 if p<0 and 1 if p>1. The densities are only strictly correct in the limit that RAND_MAX approaches infinity. In regions where the density is small (where (x)∆x≈1/RAND_MAX, for some characteristic ∆x), a small set of random numbers is mapped to a large output range, leading to relatively sparse coverage.

Name
Domain
Range
Density

exprand
[0,∞)
[0,∞)
1/a*exp(–x/a)

(–∞,0]
(–∞,0]
1/a*exp(–x/a)

exprand30
[0,∞)
[0,∞)
1/a*exp(–x/a)

(–∞,0]
(–∞,0]
1/a*exp(–x/a)

unirand
(–∞,∞);lo≠hi
[lo,hi]
1/|hi–lo|

unirand30
(–∞,∞);lo≠hi
[lo,hi]
1/|hi–lo|

signrand

{–1,1}
{0.5,0.5}

coinrand
(–∞,∞)
{0,1}
{1–p,p}

coinrand30
(–∞,∞)
{0,1}
{1–p,p}

intrand
[1,∞)
{0,1,…,n–1}
{1/n,1/n,…,1/n}

intrand30
[1,∞)
{0,1,…,n–1}
{1/n,1/n,…,1/n}

thetarand

[0,π]
1/2*sin(x)

radrand1
(–∞,∞)
[0,r]
2x/r2
radrand2
(–∞,∞)
[0,r]
3x2/r3
binomrand
n>0, all m,s
[m–s√(3n),m+s√(3n)]
≈Gaussian with mean m, std. dev. s
intrandp
n>0, 0≤pi≤1
{0,1,…,n–1}
{p0,p1-p0,…,1-pn-2}

poisrand
(–∞,∞)
[0,∞)
Poisson with mean xm

gaussrand

(–∞,∞)
Gaussian with mean 0, std. dev. 1

sphererand
[0,∞)2
[–rad2,rad2]3
Point in spherical shell

sphererandd
[0,∞)2
[–rad2,rad2]3
Point in spherical shell

randomize sets the random number generator seed to the current time.

exprand returns an exponentially distributed random double.

exprand30 is identical to exprand, except it uses a 30 bit random number.

unirand returns a uniformly distributed double between lo and hi, inclusive.

unirand30 is identical to unirand, except it uses a 30 bit random number.

signrand returns 1 or –1 with equal probability.

coinrand returns 1 with probability p, and 0 otherwise.

coinrand30 is identical to coinrand, except is uses a 30 bit random number.

intrand returns an integer between 0 and n-1 with equal probability for each value. The probability distribution is correct if n is a divisor of RAND_MAX+1 (i.e. an integer power of 2), quite good if n is a small integer, and poor if n is a significant fraction of RAND_MAX and not a divisor of RAND_MAX+1.

intrandp is identical to intrand, except it uses a 30 bit random number.

thetarand is intended for use in choosing a random  direction in spherical coordinates.

radrand1 is intended for use in choosing a random radius within a circle of radius r. In combination with a random angle (uniform between 0 and 2π), this yields a random point uniformly distributed within the circle.

radrand2 is intended for use in choosing a random radius within a sphere of radius r. In combination with a random spherical angle, this yields a random point uniformly distributed within the sphere.

binomrand adds together n random variables from a uniform density and then scales the sum to yield the proper mean and standard deviation. It’s an easy alternative for a true Gaussian density, although not as fast or as well distributed as a look-up table and interpolation (see randtable). It’s also misnamed, since a true binomial distribution is the sum of numbers chosen from {0,1}.

intrandp is similar to intrand, but allows non-uniform probabilities for each integer (however, it doesn’t improve on the distribution accuracy for large n values). p is sent in as a list of cumulative probabilities for each integer. Since they are cumulative, p is an increasing list of numbers between 0 and 1, and pn-1 should be equal to 1. Results will always be between 0 and n-1, even with incorrect p values.

poisrand returns an integer chosen from a Poisson density with mean xm, which will typically be in the range xm±√xm. This routine is copied almost verbatim from Numerical Recipies. A feature which the book routine has and which is kept here is that if the routine is called more than once with the same value of xm, it doesn’t recalculate some variables, in order to speed up the routine. Negative values of xm are possible but always return a value of 0.

gaussrand returns a normal deviate with mean 0 and standard deviation 1 using the Box-Muller transformation described in Numerical Recipies.

sphererand returns a 3 dimensional point in x which is uniformly distributed within a spherical shell bounded on the inside by rad1 and the outside by rad2 (both inclusive). For a fixed radius, set both rad1 and rad2 to the radius. The input contents of x are ignored although it needs to be allocated to at least size 3.

sphererandd is identical to sphererand except that it uses doubles rather than floats.

randtable fills in a lookup table with entries for quickly converting a uniform density to an alternate density, using eq to indicate which density is desired. n is the number of elements in the table. If eq is 1, the density is a normal density with mean 0 and standard deviation 1; returned values range from –erf–1(0.5/n–1) to erf–1(0.5/n–1). For example, if rt is a table with 1024 elements, the following expression would return a normally distributed random variable with mean mu and standard deviation sd: x=mu+sd*rt[rand()&1023], also the range is from –2.33 to 2.33. Clearly, there are only n possible outcomes in this expression, which could be corrected by linear interpolation and somewhat slower and lengthier code.

showdist is only intended for debugging routines such as binomrand, so it is not a general routine. It plots a bar graph (bin bars that range from the first bar center at low to the last bar center at high) showing the distribution of n random variables from binomrand(10,0,1) or some other routine; it also displays the actual mean and standard deviation.

