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We discuss the deduction of reaction pathways in complex chemical systems from measurements of
time series of chemical concentrations of reacting species. First we review a technique called
correlation metric constructiofCMC) and show the construction of a reaction pathway from
measurements on a part of glycolysis. Then we present two new improved methods for the analysis
of time series of concentrations, entropy metric construgtvC), and entropy reduction method
(ERM), and illustrate(EMC) with calculations on a model reaction system. 2001 American
Institute of Physics.[DOI: 10.1063/1.1336499

Complex chemical kinetic systems have many reacting this paper we focus on the deduction of reaction pathways
species and catalysts, and the reaction mechanism de- and mechanisms from measurements of time series of chemi-
scribes their chemical connections in a series of elemen- cal concentration¥” In Ref. 16 we presented a new tech-
tary reactions. Each step gives the reactants which, in a nique, called correlation metric constructit@MC) of reac-
single collision, yield the stated products. We discuss the tion pathways. A prediction of the reaction pathway is
determination of reaction mechanisms deduced from deduced from time-lagged correlation functions of two
measurements of the time series of the concentrations of chemical species at a time, obtained from concentration mea-
the chemical species in the system. We review the method surements. These functions are converted into interspecies
of using concentration correlation functions to construct  distances, which are then used in the construction of a mul-
a correlation metric for this purpose, and present two tidimensional object; a specified two-dimensional projection
improved procedures, which require a larger number of  yields the reaction pathway of the reacting system. This ap-
measurements. proach came from earlier theoretical and experimental work
on the implementation of computations by macroscopic, ki-
netic systems8-2* from the theoretical and experimental

I. INTRODUCTION demonstration that complex biochemical reaction networks
implement logic function€>2% and from prior work in elec-
fronic circuit theory, system theofy;?® and multivariate

A series of studies have been concerned with new a
proaches to the deduction of the connectivities of chemicaly;iigtic29-31|n Ref. 17 we reported an experimental test of
species, the reaction pathway, and the reaction mechanism

| ” ¢ : ts. Th e theory on a part of aim vitro glycolysis system contain-
compiex reaction systems Irom measurements. 1hese aﬁig 8 enzymes and 14 metabolites. We review this work in

proaches try to go beyond the art practiced in chemical k"Sec. Il. We then turn in Secs. Il and IV to the presentation

netlchs f(?r at le%St 100 ye_ars,_tthat IIS i)ftg;essgg tz_a reaCt_':)Bf alternative and improved, procedures for the analysis of
mechanism and comparing 'S. ca _cuae predicions With; .o series of concentrations, and illustrate one of these with
measurements. Stable and radioactive tracers have been u r‘%

. Hiculations on a model reaction system.
to follow the transfer of a given tracer from one molecule to
another, or the transformation of a tagged molecule from one CORRELATION METRIC CONSTRUCTION
type to anothet.In Refs. 2—9 we presented and tested an
approach suitable for oscillatory reactions, which consisted Consider a reacting system with two sets of species des-
of a categorization of such reactions, the identification ofignated | and S; we suppose that we can perturb each of the
species essential and nonessential for oscillations, and tHespecies externally. In the absence of such perturbations the
connectivities of these species, all deduced from several exsystem is in a stationary state. The perturbations of the |
periments. One class of such experiments is concerned witspecies are chosen such that the concentration state space of
the determination of Jacobian matrix elements, either fronall |+S species is adequately sampled. Imposing the choice
time-series analysi&!! or from quenching studi€€™'* In  of an uncorrelated multivariable Gaussian distribution of the
another approach, still to be developed much further, we invariation of input species concentrations guarantees that the
troduced the technique of genetic algorithms for a systematientire state space of the input species is sampled and that
search for a reaction mechanism assigned a specifi¢task. there are no auto or cross correlations among the input spe-
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cies. For each of theHS species we have a deterministic I I
kinetic equation for the concentratiof) of specieg, which 2 1
may be from within either the | or S set

de
W_Fi(x)’ (2.1
wherex denotes a vector all thet S species concentrations.
The solutions of Eq(2.1) are time-dependent deterministic
trajectories, which lie on a hypersurface of$—1 dimen- 4
sions. If we vary the concentrations of the input species ran- e e
domly and thus move the system away from its stationary
state, then the system will return towards that state along a
deterministic trajectory. Repeated random variations of input
concentrations and measurement of the responses of-tBe | SS S3 S4
species will then sample the hypersurface effectively, and we
obtain a time-series measurement of the stochastic distribu- W W
tion of inputs and responses. The perturbations are chosen to
remove the system from its linear regime, and the time in-
terval between concentration measurements are assumed to X" X ¢
be less than the slowest relaxation time in the system. 6
5
6

In CMC we form from these measurements time-lagged (=)
correlation functions of a pair of species, one such function E
for each pair,

(1) =((x ()= x) (X (t+7)—X))), (2.2 S7 S6

where the bar ow; denotes the time average of the concen- w

tration of the time series of speciesand the brackets denote

the time average over all measurements. The time interval FIG. 1. A model reaction mechanism: the species varied randomly from
b iti fi d the time-lagaed COrqutside are labeled by |, and other species by S. Species marked with an

may_ € posil _|ve, ne_ga vaf’ or ze_ro, an : g_g asterisk are held constant. The enzyle is inhibited noncompetitively

relation matrixR(7) is defined with the reduced matrix ele- (minus sign in the circleby I, and similarly forE, andEs. From Ref. 16.

ments

Sij(7) 23

ri(7)= —.
N VSi(7)S;(7) A projection of that object onto two dimensions can be cal-

] . ] culated which provides the most information about the mul-
The pair correlations depend on the elementary reactions ifigimensional object.

the system and their rate coefficients in a complicated way.  Tests of this theory were made on several model reaction
A simple agglomerative dependency algoritfirselects systems; one is shown in Fig. 1, which is an open system, a
the most important, significant correlations and creates a sinkompination of three futile cycles, and functions as a NAND
gly linked graph in which every _chemical species is CON-gate. All enzyme catalyzed reactions are given by
nected to at least one other species. Michaelis—Menton mechanisms. Calculations of the re-
Next the correlation matrix elements are converted intoSponses of the S species to random inputs of the | species
distance matrix elements with the definitions gives the necessary information for the calculations of the
pair correlation functions, the correlation distances, the for-
mation of the correlation object, and its projection onto a
L . (2.4 plane. This projection is shown in Fig(&), which gives a
Cij ma)4r|1(7')|7 . .
good representation of the reaction pathway of the model
where max specifies the absolute value of the maximum of ahown in Fig. 1. Figure B) is obtained by allowing the
given correlation regardless of the valueof distances between points to be greater, equal to, or less than
The distance matrix elements are analyzed with a multithe actual distances by use of an optimization procedure
dimensional scalindMDS) method to construct a multidi- which minimizes an assumed stress function.
mensional object. The inputs for the MDS method are the A cluster analysis can also be made which summarizes
measurements of time series of concentrations and the outhe groupings of chemical subsystems in the reaction system
puts are a map of the connections due to correlations of thend gives a hierarchy of interactions among the subsystems.
species. The object presents measures of relatedness of tilBeveral caveats about the CMC method are given in Ref. 16,
series; the more related the more likely that two species arparticularly in regard to the simple connection algorithm
connected by a single reaction. The dimensions of the objeatsed for choosing the most important correlations regardless
give an indication of the complexity of the reaction network. of the time lagr.

dij = (Cii — 23+ ¢j5) 2= 2(1.0-¢;j) 2
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FIG. 2. Results of calculations of the multidimensional scaling analysis of | 04 - F168P..'*'
the model reaction system shown in FigAL Projection onto two dimen- ; \"‘:mP DHAP
sions; the distances between points are equal to or less than the calculate] . ] b
distances in the multidimensional obje(®) A projection obtained with an PV A SIS SRS T 08

imization meth Ref. 16.
opt atio ethod, see Ref. 16 B Reaction Diagram of Glycolytic System

GeP

Other models were investigated in Ref. 16, some with "
more variables, and one with two distinct time scales. The
CMC provided the reaction pathways as in the first example
and further showed a separation of species according to th

B ]
F6P /=== F26BP

AMP-l ——p» AMP —.J
+

separation of time scales. Citrate
The theory of correlation metric construction was tested F1e8p
by application tan vitro experiment’ on a part of glycoly- Citrate-|

sis, see Fig. 3. The experiments were carried out in a
continuous-flow stirred reactor vessel, with the enzymes be-
ing confined to the vessel by a membrane. Capillary electro-
phoresis was used to analyze quantitatively the outflow fronfIG. 4. (A) The two-dimensional projection of the multidimensional scaling

the vessel, which was sampled periodically. The species cidliagram for the measured time series. The closer two points are the higher

- .the correlation between the respective time series. Blgky) lines repre-
rate and AMP were selected for random variations of the"Isent negative(positive correlations between the respective speciés-

concentrations, and consequent perturbation of the glycolysigws) Temporal ordering among species based on the lagged correlations
system from its nonequilibrium stationary state. The concenbetween their time serieéB) The predicted reaction pathway derived from

trations of these two species and six other metabolites Wer@e correlation metric construction diagram. Its correspondence to the
known mechanism(Fig. 3) is high. See Fig. 3 for abbreviations. From

Ref. 17.

DHAP

GlucouMP Creatine-Pp  Creatine
measured at given time intervals. From these measurements
e two-species time lagged correlation functions were calcu-
ADP AD

lated. These results give information on the temporal se-

cK
P
GeP AtP

P P
= b T
26BPase F16B8Pase Aldolase
F268P F&P F168P 4—C [m
R
ADP xnr ATP ADP

Citrate AMP

quence of events, for instance, whether a perturbation of one
species follows or proceeds that of another species. These
results combined with multidimensional scaling analysis led
to the two-dimensional projection of the MDS object formed,
as shown in Fig. @A). The reaction pathway deduced from
that projection is shown in Fig.(B). Both of these deduc-
tions from the measurements resemble closely the reaction
pathway obtained by traditional methods. The connectivities
of the species, as well as the locations of the positive and

T negative effectors, are obtained correctly. No postulates of
any kind about the reaction mechanism had to be made to
_ o o o obtain the results in Fig.(A).
FIG. 3 The l_‘|rst few initial steps of egcoI_yS|s, mingplus S|gn$|nd|cz_:1te The CMC method requires that the random Gaussian
negative(positive effectors on the respective enzymes. Regulatory interac-, . . .
tion: (minus signs a negative effector{plus signg a positive effector. |nput§ elicit rgsponsgs in the concentrations of the other
Creatine-P(phosphateand C(creatine kinasekeep the concentrations of Chemical species which are adequately represented by Eq.
ATP and ADP constant.;R inorganic phosphate; HK, hexokinase; G6P (2.2): that expression is the second moment of the pair dis-
glucose-6-phosphate; PHI, phosphohexose isomerase; F6P, fructose-@- ; : :
phosphate; F26BPase, fructose-26-biphosphatase; F26BP, fructose-2 lbutlon function, an_d hen_ce the_ _reSponse correlf_;ltlons
biphosphate; PFK, phosphofructokinase; TPI, triose phosphate isomeras%hOUId also be Gz_iu55|an. This andltlon Se_ems to suffice f(_)r
GAP, glyceraldehyde phosphate. From Ref. 17. the example studied and for the interpretation of the experi-

Cltrate-l AMP-{
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ments cited, all of which have nonlinearities in the kinetics. [(X;Y)=h(X)+h(Y)—h(X,Y) (3.9
However, as we show in the next section, for certain strong

nonlinearities and correlations extending over several spear in terms of the effective sizes of the support sets
cies, higher than the second moment of the pair probability Xy h(X.Y)
distribution function may contribute and an improvement on S(X,Y) €

CMC is required SOSY) ~ g =€ Y= 1. 3.5

We define an EMC correlation distance based on information
entropy as the minimum of E@3.5) regardless of the value

Ill. ENTROPY METRIC CONSTRUCTION METHOD of 7,

(EMC)

A. General d =minM=min e~ 1(X:Y) (3.6)
VETSX)S(Y) ' '

In this new method we determine from the measure-

ments of time series of concentrations of species more infortf the correlation of the speciesandY is Gaussian, then the
mation than in CMC. From the responses to the stochastiexpression(3.6) for the EMC distance usually leads to a
inputs we determine the pair distribution functip(x; ,X;,)  result similar to that of the CMC distance, Eg.4).

of chemical concentrations in a method explained below. The CMC and EMC distances satisfy the first three re-
The pair correlation function defined in E@.1) is the sec-  quirements of a metric:

ond moment of the pair distribution function and is obtained

from it by integration (1) dy,=0,

S(1= | (=X 0x(t+ %) (2) dy=dy o
(3) dyy=0 iff x2y, '
X p[xi(t)x;(t+7)]dx dx;, (3.1

where an ensemble average replaces the average over a time (4) dyyt dzyzdxy

series of experiments on a single system. More measur(i?—

ments are needed to determine the pair distribution functio ut not the trla_mgulqr mequallty,_condltl(;im. Th|s_5|_tu§1t|on
than the pair correlation function. can be remedied with the technique of stress minimizafion.

Further we choose a hew measure of the correlation dis‘[here is frequently little difference in the results of the pre-
tance. one based on an information theoreticaldiCtion of a reaction pathway whether the stress minimiza-

formulation3233 A natural measure of the correlation dis- 10N téchnique is applied or not.

tance between two variables is the number of states jointly

available to thenithe size of the support getompared to

the number of states available to them individually. WeB. An example

therefore require that the measure of the statistical closeness . : .
We choose an example of a reaction mechanism to illus-

betwee.n' varlablgx and be the fraction of the number of trate the calculation of EMC distances and the prediction of
states jointly available to them versus the total possible num-

ber of states available 8§ and Y individually. Further, we a reaction pathway from simulated time series of concentra-

. %ions. We compare these results with predictions of the CMC
demand that the measure of the support sets weighs the Star%%thod The example is chosen to show differences between
according to their probabilities. Thus two variables are clos ’ b

and the support set is small, if the knowledge of one predict: d?ﬁ;?eévggsa%?zig?é?s ﬂgoe Ir:(ejzlcck?;iigr]: origin of these
the most likely state of the other, even if there exists simul- ' P
taneously a substantial number of other state® ka ki ko ks ky ks kg Ky

The information entropy gives the distance we demand A= X 2X, 2 X322 X2 Xs= Xg=2 X72B. (3.9
in these requirements. The effective size of the support setof k-1 k-2 ks k4 ks kg k7 ko

a continuous variable All of the reactions are first order with constant rate coeffi-

S(X)=eh™® (3.2 cients, except for theA— X, step, which is enzyme cata-
lyzed. The forward rates of reactions inside the chainkare
=0.7 for alli. The backward rates for the reactions inside the
chain arek_,=0.3,k_5=0.2, andk_;=0.1 otherwise. The
h(X)=—fp(X)|09 p(x)dx, (3.3 speciesA+B are held at constant concentrations, wih
° =B=1, andXg is varied in a prescribed wafi.e., Xg is
whereS(X) is the support set ok andp(x) is the probabil- chosen to be the input speciBswith kg=1.0. Finally, the
ity density ofX. Similarly we denote the entropy of a pair of enzyme-catalyzed step has the effective rate coeffidignt
continuous variableX,Y, ash(X,Y), which is related to the =60.0Xg/(40.0+ Xg)(60.0+ Xg).

in which the entropyn(X) is defined by

pair distribution functiorp(x,y) by an equation analogous to The difficulties in this example arise from the self-
(3.3). The mutual information (X;Y) between two stochas- inhibition of the enzyme catalysis b¥5. The rate coefficient
tic variables is ka first increases with increasing concentratigand then
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1 600 b FIG. 5. The diamonds plot the values
of X; vs Xg obtained from the simu-
14| lated time series. The rectangles are
400 2 - the result of a partioning algorithm,
see the text. From Ref. 32.
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decreases. The hypersurface formed by eliminating the timarea of the rectangle. We use the pair distribufdiX; , Xg)
dependence from the set of equatid@sl), by dividing the to calculate the singlet distributions(X;) and p(Xg) by
equation for each but one of the species by the equation fantegrations. Then, with E43.3), and its analog foh(X,Y),
that one species, is folded over due to the quadratic depenve calculate EMC distances, see E8.6), for pairs of spe-
dence ofk, on Xg. cies. The primary connections among the species are thus
In the simulation the concentration ¥ is varied ran-  obtained and their corresponding distances, as derived from a
domly and the responses of the other species are calculatedultidimensional scaling analysis, are shown in Fig. 6.
to give time series of 2000 data points; these series are the The calculations of the CMC distances by means of Eq.
starting point for both the EMC and the CMC analysis. The(2.4), and subsequent multidimensional scaling analysis,
diamonds in Fig. 5 show the values ¥§ vs X; obtained vyields a 2D projection, see Fig. 7, that differs from the EMC
from these time series. The folding of the hypersurface in th@nalysis in two respects. The reaction pathway predicted by
concentration space is shown in this projection onto theeMC correctly shows the close correlation of the enzymatic
X1—Xg plane. The space in this plane is divided into rect-catalystXg and specieX;. It also shows correctly the chain
angles of varying size so that the distribution of points isof linear reactions fromX; to X;. The CMC method also
uniform in each rectangle to within a given accurdtifthe  shows thaiXg is correlated withX;, but more weakly. Less
density in each rectangle,{) wherei andj are indices of importantly, the CMC method yields a wrap around in the
the discretization of the continuous ranges of valueXpf placing of species 7. However, the three-dimensional repre-

and Xg, is the pair probability distribution sentation of the multidimensional CMC object implemented
N by stressing the original CMC distances into three rather than
pij(X,y)= N I,]A , two dimension_al resglts ir_1 the correct s_equenc_ing of the spe-
tot™ij cies: the species points lie on a 3D spiral, which when pro-

whereN;; is the number of points in the particular rectanglejected onto two dimensional results in the wrap around ef-
labeled{i,j},Ni is the total number of points and; is the  fect.

FIG. 6. EMC construction of the reaction mechanism of the example. FronFIG. 7. CMC construction of the reaction mechanism given in Bf).
Ref. 32. From Ref. 32.
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FIG. 8. Contour plot of the pair distribution function
p(Xy,Xg); the values of the concentrationsXf vs Xg,

as obtained from the simulations, are also shown. From
Ref. 33.

The differences in the CMC and EMC predictions can be  The CMC method gives a reasonable approximation to
traced to the different pair probability densities estimated bythe reaction pathways of many systems, including nonlinear
these methods from the given time series. In Fig. 8, we showystems; strong nonlinearities may demand the use of the
a contour plot of the pair distribution functign(X;,Xg) as EMC method, which requires more data points than the
calculated by a semi-non-parametf8NP method® with CMC method; we do not know how widespread the need is
the time series simulations for these two species superinfor the EMC method.
posed. In comparison, we show in Fi§ a Gaussian pair
probability distribution, as is consistent with CMC, with the
same means and variances as those of the EMC distributiof; eNTROPY REDUCTION METHOD
The deviations of the EMC from the Gaussian distribution
show that higher than second moments contribute. Since the EMC provides a more accurate representation of the re-
information entropy for any distribution is less than or equallationship between two variables because nonlinearities are
to that of a Gaussian distribution, we see that the CMCbetter described if higher moments of the pair distribution
method gives upper bounds to correlation distances betweeare considered. There is, of course, a price to be paid for this
species. higher accuracy and that is the requirement for large amounts

80

~

60 |

40

FIG. 9. Gaussian joint normal distribution of the vari-
ables X; and Xg with the means and covariances of
those of the distribution in Fig. 8. From Ref. 32.

20 |

0.4 0.45 0.5 0.55
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